MECHANISMS OF SINGULARITY

DETERMINISTIC NECESSITY

SELECTIVE BOTTLENECK

RESTRICTIVE BOTTLENECK

PSEUDO-BOTTLENECK

FROZEN ACCIDENT

FANTASTIC LUCK

INTELLIGENT DESIGN

ORIGIN OF LIFE

SPACE CHEMISTRY

LUCA

(Last Universal Common Ancestor)

Cosmic Chemistry

CHEMISTRY

First RNA Molecules

<u>CHEMISTRY</u> + INFORMATION

LUCA

MOLECULAR SELECTION

(EVOLUTION IN THE TEST TUBE)

TEMPLATE

REPLICATION

MUTATIONS

SELECTION

FINAL PRODUCT

 $(OPTIMAL\ STABILITY + REPLICABILITY)$

CELLULAR SELECTION

GENE

REPLICATION

MUTATIONS

MODIFIED GENE PRODUCTS

SELECTION

FINAL GENE (CELL)

(MOST USEFUL GENE PRODUCT)

1. PRE-RNA STAGE

A) CHEMICAL FOUNDATION

(Protometabolism)

B) FIRST POLYNUCLEOTIDES

(Gemisch)

C) FIRST REPLICATABLE MOLECULES (RNA)

1

D) MOLECULAR SELECTION

(Eigen 's « Ur-Gen »)

BIRTH OF ENZYMES

1a. MUTATION OF RNA GENE

1b. NEW PROTEIN WITH ENZYMATIC ACTIVITY

1c. SELECTION OF MUTANT PROTOCELLS

2. NEW MUTATION --> ENZY ME --> SELECTION

3. NEW MUTATION --> ENZY ME --> SELECTION

4. NEW MUTATION --> ENZY ME --> SELECTION

300. FULL SET OF NEW ENZYMES --> METABOLISM

CONDITION OF SELECTION

ENZYME MUST BE USEFUL, i.e., MUST FIND SUBSTRATE (S) AND OUTLET(S) IN PROTOMETABOLISM

HENCE

PROTOMETABOLISM AND METABOLISM WERE CONGRUENT, i.e., FOLLOWED SIMILAR PATHWAYS

PROTEIN SEQUENCE SPACE

<u>Peptides</u>			
Length	Number	Total Mass	
n(am.ac)	$20^n = 10^{1.3xn}$	$1.8 n \times 10^{(1.3n-22)} g$	
10	$20^{10} = 10^{13}$	18 ng	
20	$20^{20} = 10^{26}$	360 kg	
30	$20^{30} = 10^{39}$	5.4 x 10 ¹⁵ kg (10 ⁻⁹ Earth)	
50	$20^{50} = 10^{65}$	1.8 x 10 ¹⁷ Earths	
100	$20^{100} = 10^{130}$	3 x 10 ⁵⁴ Universes	
200	$20^{200} = 10^{260}$	6 x 10 ¹⁸⁴ Universes	
300	$20^{300} = 10^{390}$	9 x 10 ³¹² Universes	

THE FIRST PROTEIN ENZYMES WERE VERY SHORT

A) THE FIRST RNA GENES WERE 50 TO 100 NUCLEOTIDES LONG

1) Phylogeny of tRNAs

(Eigen & Winkler-Oswatitsch, 1981)

 Maximum Length = Inverse of Replication Error Rate (2 to 1%)

(Eigen & Schuster, 1977)

B) THE FIRST PROTEINS WERE NO MORE THAN ABOUT 20 AMINO ACIDS LONG

Assuming RNA Genes of about 70 Nucleotides, 60 Translatable (1.43% Replication Error)

C) PEPTIDES 20 AMINO ACIDS LONG CAN DISPLAY CATALYTIC ACTIVITIES

THE BIRTH OF PROTEINS

CHANCE DOES NOT EXCLUDE INEVITABILITY

Let **P** be the probability of an event

not taking place.

Then the probability P' of the event

actually taking place = 1 - Pn,

in which *n* is the number of trials.

Examples

GAME	PROBABILITY P'FOR n=1	VALUE OF <i>n</i> FOR <i>P'</i> =99.9%
Toss of a Coin	1/2	10
Throw of a Die	1/6	38
Roulette (1 zero)	1/37	252
Lottery (7 digits)	1/10 ⁷	69x10 ⁶
Point Mutations (replication errors)	1/(3x10 ⁹) per cell division	20x10 ⁹ divisions

Probability of finding a given point mutation
in a clone is 99.9% after about
34 generations (less than one day
for bacteria; about one month
for eukaryotic cells).

In red blood cell formation in a human adult,

it takes about 2 hours for any given point mutation

to occur with a 99.9% probability.

Examples

Antibiotic-resistant bacteria
Chloroquine-resistant plasmodia (malaria)
DDT-resistant mosquitoes
Herbicide-resistant weeds
Dark/light English moths
Animal mimicry

Land adaptation of marine animals?

Hominization?

Convergent Evolution